Analyze¶
- class lisacattools.analyze.AbstractLisaAnalyze[source]¶
Abstract Object to link the two implementation and to share some method.
- class lisacattools.analyze.CatalogAnalysis(catalog: GWCatalog, save_img_dir=None)[source]¶
Handle the analysis of one catalog.
- property catalog¶
Catalog.
- Getter:
Returns the catalog of this analysis
- Setter:
Sets the catalog.
- Type:
- class lisacattools.analyze.HistoryAnalysis(catalogs: GWCatalogs, save_img_dir=None)[source]¶
Analyse a particular source to see how it’s parameter estimates improve over time
- property catalogs¶
Catalogs.
- Getter:
Returns the catalogs of this analysis
- Setter:
Sets the catalogs.
- Type:
- plot_parameter_time_evolution(df: DataFrame, time_parameter: str, parameter: str, *args, **kwargs) NoReturn [source]¶
Plot the parameter that evolves over time.
Note: extra parameter can be configured: - plot_type, default : scatter - grid, default : True - marker, default : ‘s’ - linestyle, default : ‘-’ - yscale, default : log - title, default : Evolution
- plot_parameter_time_evolution_from_source(catalog_name: str, source_name: str, time_parameter: str, parameter: str, *args, **kwargs) NoReturn [source]¶
Plot the parameter that evolves over time for a given source starting from a catalog.
Note: extra parameter can be configured: - plot_type, default : scatter - grid, default : True - marker, default : ‘s’ - linestyle, default : ‘-’ - yscale, default : log - title, default : Evolution
- plot_parameters_correlation_evolution(allEpochs: DataFrame, wks: List, params: List, colors: List, *args, **kwargs) NoReturn [source]¶
To dig into how parameter correlations might change over time, we can look at a time-evolving corner plot
- Parameters:
allEpochs (pd.DataFrame) – observation of a source at different
epochs –
wks (List) – weeks to plot
params (List) – parameters to plot
colors (List) – color according the weeks
- plot_parameters_evolution(all_epochs: DataFrame, params: List, scales: List, *args, **kwargs) NoReturn [source]¶
Show evolution over many different epochs.
- Parameters:
all_epochs (pd.DataFrame) – observation of a source at
epochs (different) –
params (List) – list of parameters to plot
scales (List) – Scale for each plot
- plot_skymap_evolution(nside: int, allEpochs: DataFrame, wks: List, system: FrameEnum = FrameEnum.GALACTIC, *args, **kwargs) NoReturn [source]¶
Plot the skymap evolution
- Parameters:
nside (int) – parameter for healpix related to the number of cells
allEpochs (pd.DataFrame) – observation of a source at different
epochs –
wks (List) – weeks to plot
system (FrameEnum, optional) – coordinate reference frame. Defaults
'FrameEnum.GALACTIC'. (to) –